Properties
Category
English
Similar Topics
Statistics
Comments
7
Participants
4
Subscribers
0
Votes
1
Views
1728
Share
Answered
How do you draw a unique line tangent to the two points on the curve y=x^4+x^3
- GeoGebra
- Help
- Partners
-
Contact us
- Feedback & Questions
- This email address is being protected from spambots. You need JavaScript enabled to view it.
- +43 677 6137 2693
© 2023 International GeoGebra Institute
Do you mean like this, or something else?
http://tube.geogebra.org/ma...
hello
i got with Maxima that you must use the point A=((sqrt(3)-1)/4,0) and f(x)=x^4+x^3 then Tangent[A, f]
i can not get it with CAS because i do not know how to say to CAS a!=c for solutions of equations
saludos
hello
it is possible with CAS substituting by hand for avoiding 0/0
saludos
The common tangent slope is the same of the tangent at point A(-1/4,f(-1/4)), being -1/4 the solution of equation: third derivative of f(x)=0. See att'd figure.
Finalized.
More details.
MatLab solution, according to mathmagic's scheme.
% ------------- twovars2.m ------------- (May.20,2015) ------
% ----- Successive approx. 2x2 system of NON LINEAR equations ------
% --------------------------------------------------------------------------
clc, clear, close all % clear screen
format long
% -------------------------------------------------
% 2 starting values of iteration
a=0.8; c=-1.2; % a= right-hand abscissa; c= left-hand abscissa
%
% System to solve: F1(a,c)=0; F2(a,c)=0
while 1 % Start iteration
F(1)= (4*a^3 + 3*a^2)*(a-c) - (a^4+a^3-c^4-c^3); % F1
F(2)= (4*c^3 + 3*c^2)*(a-c) - (a^4+a^3-c^4-c^3); % F2
% ------- W = jacobian matrix ----------
W(1,1)= (12*a^2 + 6*a)*(a-c)+ (4*a^3 + 3*a^2) -4*a^3-3*a^2; % F11= dF1/da |F12 F12|
W(1,2)= -(4*a^3 + 3*a^2)+4*c^3+3*c^2; % F12= dF1/dc W= | |
% |F21 F22|
W(2,1)= 4*c^3 + 3*c^2-4*a^3-3*a^2; % F21= dF2/da
W(2,2)= (12*c^2+6*c)*(a-c)-(4*c^3 + 3*c^2) +4*c^3+3*c^2; % F22= dF2/dc
%
P=inv(W)*F'; % Xi+1= Xi - inv(W)*F(Xi); iteration vars Xi=(ai,ci)
%
a1 = a - P(1); c1 = c - P(2);
fprintf ('\n ai = %9.6f ci = %9.6f', a1,c1);
if abs(P(1)) < 1e-8 & abs(P(2)) < 1e-8
break;
end
a = a1; c = c1;
end; % end while 1 (iteration)
%
fprintf ('\n\n RESULTS \n a = %9.6f c = %9.6f \n', a1,c1);
%
% ------- EOF: twovars2.m ---------
% Output, convergence per successive approximations
% ai = 0.559666 ci = -0.992490
% ai = 0.388581 ci = -0.847549
% ai = 0.274385 ci = -0.753663
% ai = 0.209812 ci = -0.702834
% ai = 0.186168 ci = -0.685221
% ai = 0.183063 ci = -0.683046
% ai = 0.183013 ci = -0.683013
% ai = 0.183013 ci = -0.683013
% ai = 0.183013 ci = -0.683013
%
% RESULTS
% a = 0.183013 c = -0.683013
Comments have been locked on this page!