Recursive graph?

jojoba26 shared this question 15 years ago
Answered

I know we cannot draw recursive graph with GeoGebra 2.7 .

but is it possible to draw recursive graph with GeoGebra 3.0 ?


the following graph is drawn with KSEG

http://learn.jhsh.tpc.edu.t...


thanks

http://learn.jhsh.tpc.edu.t...


:? :? :? :? :? :? :? :? :? :?

Comments (11)

photo
1

perhaps you can find help here


http://www.geogebra.org/en/...


saludos

photo
1

This link is invalid now. Can you please share it again? Thanks.

photo
1

¡Hace trece años!

Yo no recuerdo cuál fue el primer fractal que hice, pero ahora podría ser uno de estos

https://www.geogebra.org/m/Hh2uZWun

https://www.geogebra.org/m/Hh2uZWun

o uno de muchos

https://www.geogebra.org/se...

photo
1

Thanks.

I'm trying to draw a Recursive function graph,

f(x)=

1-abs(x-2), 1<=x<3

x>=3, 2f((x-1)/2)

x<1, f(2-x)

I would like to know if there is a more direct way, other than resolves it to an acyclic function, or dilate(), or use js to draw trace.

photo
1

it seems a piecewise function but i do not understand the definition, ie what is the value of f(0) ?

and value of f(47)

photo
1

You can always try find a single expression for the function term using floor/ceil/round.

The one you described here, can be expressed like this:

interval(x) = floor(ld(x + 1)) + floor(ld((x + 1) / 1.5))
absYaxis(x) = 2^(floor(interval(x) / 2) + 1) - 1
f0(x) = (-1)^interval(x) (absYaxis(x) - x)
f(x) = If(x < 1, f0(2 - x), f0(x))

photo
1

To mathmagic,

f(0)=f(2-0)=f(2)=1-abs(2-2)=1

f(47)=2f(23)=4f(11)=8f(5)=16f(2)=16

photo
1

To artydent,

I knew this way, so I said I would like to know if there is a more direct way.

I have tried 3 ways (resolves it to an acyclic function(as your way), or dilate(), or use js to draw trace.) and all works.

photo
1

He estado intentando hacer algún otro procedimiento diferente de los tres que mencionas. Creo que lo he conseguido, pero bloquea el ordenador con pocos pasos. Todos los programas recursivos tienen un límite, incluso LOGO, pero el límite de memoria de GG hace que las definiciones usadas hasta la fecha para fractales permitan pocos pasos debido al creciente número de cálculos necesarios. En el adjunto podemos ver otro ejemplo

selecciona A2,B2,C2 y arrastra el pequeño cuadrado azul de la esquina derecha de la zona de selección tres filas hacia abajo

Files: foro.ggb
photo
1

I never thought a cell could be referenced as a function. I think this is really the most straightforward way.

Learned something new, Thank you very much.

photo
photo
1

Wonderful !

I think you must be a mathematician as well as an artist.

:confused:

© 2023 International GeoGebra Institute