Properties
Category
English
Similar Topics
Statistics
Comments
3
Participants
3
Subscribers
26
Votes
1
Views
607
Share
Issue with logarithmic function
Not a Problem
The problem is that there shouldn't be the y intercept.
Let x=0
2^x1 = 2^01 = 11 = 0
So the denominator should be Log10(0) which is impossible so y = 1/Log10(0) is impossible.
Files:
Screenshot_2018...
 GeoGebra
 Help
 Partners

Contact us
 Feedback & Questions
 This email address is being protected from spambots. You need JavaScript enabled to view it.
 +43 677 6137 2693
© 2021 International GeoGebra Institute
The point you displayed in your pic is just temporary.
Click on the function again or anywhere else in the Graphics View to make it disappear.
I understand that x=0 is the lower bound of the domain of the function. But it isn't possible to exclude x=0 from the graph, because of the density of points in the plot of a function.
I also understand that it's not great from a visual point of view, but f(0) gives 0, which is "numerically" correct, despite f(0) is not an evaluation of the function, but a limit.
So I guess that there are no problems with your function, unless you've got any other result that is not mathematically correct.
Log(0) is not impossible. It's a huge negative number. lim(x>0+) log(x) =  infinity
Hello Enrico!
You are right, but sometimes GeoGebra think and behaves like HAL9000. :)
For you there is a gap at 0, but this gap can be closed because f(x)=1/(lg(2^x1) is continuous continuable.
In the same way GeoGebra closes the gap at e. g. 1 for g(x)=(x^22*x+1)/(x1).
So GeoGebra gives you the value of the continuuos extension of your function and it's not a special issue of e. g. the logarithmic function.
Kind Regards
mire2
Comments have been locked on this page!