Properties
Category
English
Similar Topics
Statistics
Comments
4
Participants
4
Subscribers
4
Votes
1
Views
409
Share
Answered
In the Algebra View:
a = {x+2, x+3, x+4}
b = {5, 10, 15}
a*b
{x + 2*5, x+3*10, x+4*15}
Why does GeoGebra seem to think that the product of x+2 and 5 is x + 10? How can I instruct GeoGebra that the output should be
{5x + 10, 10x + 30, 15x + 60} ?
The correct result is given in the CAS view - so why not in the Algebra View?
Alasdair
- GeoGebra
- Help
- Partners
-
Contact us
- Feedback & Questions
- This email address is being protected from spambots. You need JavaScript enabled to view it.
- +43 677 6137 2693
© 2023 International GeoGebra Institute
You can check it's right with Polynomial(Element(l1,2)) (it's missing brackets when displayed, that's all).
Workaround
or you might like
Or if you don't want to use Sequence and Element, using Zip is nice and short:
or
if you want it already expanded.
Still a bit weird though that the the list multiplication doesn't work. The elements of the first list seem to be interpreted differently then.
Many thanks. I know I can "force" Geogebra to give me the correct answer by creating a sequence that multiples each pair of elements from the initial sequences, but the thing is, I shouldn't have to. Geogebra has the functionality of multiplying two lists directly - so it should work on symbolic lists as well; that is, brackets should be provided in its internal algorithm.
A list multiplication that acts in the way of my initial example is clearly wrong.
Comments have been locked on this page!