Properties
Category
English
Similar Topics
Statistics
Comments
15
Participants
4
Subscribers
4
Votes
1
Views
1267
Share
IntegralBetween yields undefined result
Answered
Hi.
When I was playing around a bit with the IntegralBetween function, I've noticed that
it sometimes yields unexpected results. For instance here:
https://i.imgur.com/vgVhBjc.png
GeoGebra is happy to compute the integral with limits from 2 to 1/2, but when I try to
compute the integral with limits from 1/2 to 2, it yields "undefined".
Is this some kind of bug?
Kind regards and thanks in advance for any feedback, Niek
Files:
geogebratest1.ggb
 GeoGebra
 Help
 Partners

Contact us
 Feedback & Questions
 This email address is being protected from spambots. You need JavaScript enabled to view it.
 +43 677 6137 2693
© 2022 International GeoGebra Institute
I guess that the result is related to your extensive use of floor function, that is semicontinuous.
Please have a look at the note at the end of this page: https://wiki.geogebra.org/e...
Use the CAS view to compute it
Oh, sorry. I forgot to change the GUI language. It's the IntegralBetween command.
I guess that the result is related to your extensive use of floor function, that is semicontinuous.
Please have a look at the note at the end of this page: https://wiki.geogebra.org/e...
Use the CAS view to compute it
Oh, sorry. I forgot to change the GUI language. It's the IntegralBetween command.
I see now that you are using GeoGebra Geometry. This app is meant for geometry applications, so doesn't have the CAS engine enabled.
To get full power of GeoGebra, use version 6 Classic. See the Download page https://www.geogebra.org/download
Thanks.
When I use GeoGebra Classic though (version 6.0.529.0w), it seems to make no difference when I open the same ggb file:
https://i.imgur.com/sQbRmal.png
I'd like to avoid the floor function, but it seems a bit tricky to find some equivalent expression using
trigonometric functions.
Ah, I see it does work like this: "IntegralBetween(s,p_1,1/2,2,false)", at least to shade the area visually without computing the area numerically.
This works for the value if you need that:
Thanks, though I'm primarily interested in the visual pattern. Just to see if GeoGebra could be used to generate visual patterns like this Op Art from Bridget Riley:
https://i.imgur.com/QdxPAPk.jpg
You may find inequalities easier for that sort of thing, eg
(then line thickness > 0)Ah, that might be more convenient indeed, but somehow it doesn't let me rotate the sawtooth wave (probably because it's no longer a function under such a rotational transformation) expressed as an inequality.
https://i.imgur.com/eunyluG.png
Hmmm, I guess the most sensible way to obtain the desired results is to simply rotate the svg afterwards in InkScape.
https://i.imgur.com/pc72Fdl.png
I can't find any way to rotate the black shapes in GeoGebra.
Sadly, it seems that GeoGebra has some inherent limitations that seem to rule it out for generating visual patterns with high fidelity.
https://i.imgur.com/R0geu9y.png
https://i.imgur.com/vFezjSe.png
But perhaps I'm approaching it in the wrong way and GeoGebra can be more suitably used to generate the 3 basic constituent shapes and tiling them manually in InkScape on a hexagonal grid to obtain better results.
You can also use the Sequence() command to make such grids Sequence(Sequence(...
https://wiki.geogebra.org/e...
Yep, but I didn't see a way to do this such that I would still be able to customize the variations in the pattern. Perhaps a matrix could be used to specify these variations and then the nested Sequence command could obtain the cues from this matrix how to vary the pattern in the grid.
But even if this works and it would make it more convenient to generate the pattern (and perhaps keep GeoGebra nicely responsive because of a more compact formulation), this wouldn't resolve the lack of precision visible in the second screenshot of my previous comment.
If you use a different method to draw the shapes (eg Curve() command) then Sequence(Sequence(Translate(... then I think it will be OK
Comments have been locked on this page!