# GeoGebra 4.4 does Geometry (better)

Michael Borcherds shared this question 6 years ago

In GeoGebra 4.4, the CAS View supports exact versions of some of the geometry commands, and there is now some support for parametric curves. Here are some examples you can try :)

Center[x^2+y^2=1/sqrt(pi)]

Circumference[x^2+y^2=1/sqrt(pi)]

Distance[(a,b),(c,d)]

Distance[(0.5,0.5),x^2+y^2=1]

Distance[(0,4),y=x^2]

Distance[(0,0),x+2y=4]

Distance[x+2y=4,x^2+y^2=1]

Distance[(a,b),p x + q y = r]

Angle[(a,b),(c,d),(e,f)]

Angle[(1,0),(0,0),(1,2)]

Line[(a,b),(c,d)]

Line[(a,b),y=2x]

Circle[(a,b),(c,d)]

Circle[(a,b),r]

AngleBisector[(a,b),(c,d),(e,f)]

AngleBisector[(0,1),(0,0),(1,0)]

PerpendicularBisector[(a,b),(c,d)]

PerpendicularBisector[(-1,0),(1,0)]

Midpoint[(a,b),(c,d)]

Intersect[a1 y + b1 x = c1,a2 y + b2 x = c2]

Intersect[Curve[t,t,t,0,2],y=x^2 ]

Intersect[x^2+y^2=1,y=x]

Intersect[x^2+2y^2=1,y=x]

Intersect[x+y=1,x+y=2]

Intersect[x+y=1,x-y=2]

Intersect[Curve[t,t^2,t,0,2],Curve[t,1-t,t,0,2] ]

Intersect[x^2+2y^2=1,2x^2+y^2=1]

Intersect[y=sin(x),y=x]

Intersect[x² + 2y² = 1,y=x^2]

Ellipse[(2,1),(5,2),(5,1)]

Ellipse[(2,1),(5,2),(6,1)]

Conic[(5,0),(-5,0),(0,5),(0,-5),(3,4)]

Factor[LeftSide[Conic[(5,0),(-5,0),(0,5),(0,-5),(4,1)]]

Conic[(1,1), (0,-3), (5,2), (6,-2), (3,-2)]

Hyperbola[(1,1),(4,3),(5,1)]

Ellipse[(a,b),(c,d),r]

Ellipse[(a,b),(c,d),(e,f)]

Hyperbola[(a,b),(c,d),(e,f)]