Finding intersection point problem

Martin Dimitrov shared this question 3 days ago
Answered

So I have an inscribed right triangle with inscribed circle in it. I need the Green point - "G" (The intersection of the medians - the centroid) to intersect with the inscribed circle("d").... The end goal is to find the angles of the triangle when the points intersect.

I tried with H=Intersect(d,G) ("d" being the inscribed circle and "G" is the intersections of the medians) and it didn't work.

Comments (7)

photo
1

Cela ne doit pas être un problème de traduction ... je ne comprends pas comment un cercle et un point pourraient avoir une intersection ...


Si le but est de construire un triangle dans lequel le point G est sur le cercle inscrit, une démarche qui a l'air de fonctionner


e=Distance(G,d)

Minimize(e,C) on obtient un point J

SetValue(C,J)


est-ce cela ?


(il serait peut-être intéressant de voir ce qui se passe dans d'autres situations)

photo
1

Tangent(b, d) then Intersect(d, r)

photo
1

cela construit bien un point de d, mais qui n'est pas le point G

photo
photo
1

My interpretation is uploaded in the figure. Cheers

56436707a42064278c3fe239483ef2a1

photo
1

One more detail better clarifies

d2361133b934b51634dead71df1e3ce4

photo
1

locus green / circle r

photo
1

in un triangolo rettangolo, la circonferenza inscritta al triangolo che ha il punto G sulla circonferenza stessa, gli angoli α e γ hanno rispetivamente il valore 22.8° e 67,2° per c_1>b>a. muovere i punti A,B,C.

photo
© 2019 International GeoGebra Institute