ANSWER[row] as synonymous of $row cmd
Declined
Idea, please GG TEAM add the ANSWER[row] command as synonymous with the $row command to make the instruction sequences in the CAS view more understandable for the students.
The following sequence of statements, show step by step the solution of a simple list of equations.
with $ cmd
- { y = x^2, y = 2*x + 3 } → { y = x^2, y = 2*x + 3 }
- Substitute[Element[$1,2],Element[$1,1]] → x^(2) = (2 * x) + 3
- $2 - (2x + 3) → x^(2) - (2 * x) - 3 = 0
- Factor[LeftSide[$3]] → ((x - 3) * (x + 1))
- {Element[$4,1] = 0, Element[$4,2] = 0} → {x - 3 = 0, x + 1 = 0}
- {Element[$5,1] + 3, Element[$5,2] - 1} → {x = 3, x = (-1)}
- Substitute[Element[$1,1],Element[$6,1]] → y=9
- Substitute[Element[$1,2],Element[$6,1]] → y=9
- Substitute[Element[$1,1],{$8, Element[$6,1]}] → 9=9
- LeftSide[$9] ≟ RightSide[$9] -> true
with ANSWER CMD
- { y = x^2, y = 2*x + 3 } → { y = x^2, y = 2*x + 3 }
- Substitute[Element[answer[1],2],Element[answer(1),1]] → x^(2) = (2 * x) + 3
- answer[2] - (2x + 3) → x^(2) - (2 * x) - 3 = 0
- Factor[LeftSide[answer[3]]] → ((x - 3) * (x + 1))
- {Element[answer[4],1] = 0, Element[answer[4],2] = 0} → {x - 3 = 0, x + 1 = 0}
- {Element[answer[5],1] + 3, Element[answer[5],2] - 1} → {x = 3, x = (-1)}
- Substitute[Element[answer[1],1],Element[answer[6],1]] → y=9
- Substitute[Element[answer[1],2],Element[answer[6],1]] → y=9
- Substitute[Element[answer[1],1],{answer[8], Element[answer[6],1]}] → 9=9
- LeftSide[answer[9]] ≟ RightSide[answer[9]] → true
Syntax in XCAS
- [ y = x^2, y = 2*x + 3 ] returns [ y = x^2, y = 2*x + 3 ]
- subst((ans(-1)(2)),ans(-1)(1)) returns x^2=(2*x+3)
- ans(-1) - (2*x + 3) returns x^2-2*x-3=0
- factor(ans(-1)) returns (x-3)*(x+1)=0
- [ part(left(ans(-1)),1)=0, part(left(ans(-1)),2)=0 ] returns [x-3=0,x+1=0]
- ans(-1)(1)+3, ans(-1)(2)-1 ] returns [x=3,x=-1]
- subst(y=x^2,ans(-1)(1)) returns y=9
- subst(y=2*x + 3,ans(-2)(1)) returns y=9
- subst(y=2*x + 3,[ans(-3)(1),ans(-1)]) returns 9=9
- evalb(ans(-1)) returns 1 (true)
Why do you think that's clearer?
Comments have been locked on this page!